1 Local solvability of generic over-determined PDE systems

Let $u = (u^1, \dots, u^q)$ be a system of real-valued functions of independent variables $x = (x^1, \dots, x^p)$. Consider a system of partial differential equations of order m

$$\Delta_{\lambda}(x, u^{(m)}) = 0, \quad \lambda = 1, \cdots, \ell, \tag{1.1}$$

where $u^{(m)}$ denotes all the partial derivatives of u of order up to m. We assume (1.1) is over-determined, that is, $\ell > q$. A multi-index of order ris an unordered r-tuple of integers $J = (j_1, \dots, j_r)$ with $1 \leq j_s \leq p$. The order of a multi-index J is denoted by |J|. By u_J^{α} we denote the |J|-th order partial derivative of u^{α} with respect to $x^{j_1}, \dots, x^{j_{|J|}}$. For a smooth function $\Delta(x, u^{(m)})$, the total derivative of Δ with respect to x^i is the function in the arguments $(x, u^{(m+1)})$ defined by the chain rule:

$$D_i \Delta = \frac{\partial \Delta}{\partial x^i} + \sum_{\alpha=1}^q \sum_{|J| \le m} \frac{\partial \Delta}{\partial u_J^{\alpha}} u_{Ji}^{\alpha},$$

where Ji dentes the multi-index $(j_1, \dots, j_{|J|}, i)$. Compatibility conditions are those equations obtained from (1.1) by differentiation and algebraic operations, that is, the ideal generated by Δ and the total derivatives of Δ . By (1.1)'s being generic we shall mean that the compatibility conditions determine all the partial derivatives of u of a sufficiently high order, say $k(k \ge m)$, as functions of derivatives of lower order, namely,

$$u_K^{\alpha} = H_K^{\alpha}(x, u^{(k-1)}), \tag{1.2}$$

for all multi-index K with |K| = k, and for all $\alpha = 1, \dots, q$. This is the case where there exists a system of compatibility conditions that satisfies the nondegeneracy hypothesis of the implicit function theorem so that the system is solvable for all u_K 's with |K| = k in terms of lower order derivatives. If this is the case (1.2) is called a complete system of order k and (1.1) is said to admit prolongation to a complete system (1.2). Now we consider the ring of smooth functions in the arguments $(x, u^{\alpha}, u^{\alpha}_i, u^{\alpha}_{ij}, \cdots)$. For each non-negative integer r let $\Delta^{(r)}$ be the algebraic ideal generated by Δ and the total derivatives of Δ up to order r, where $\Delta = (\Delta_1, \dots, \Delta_\ell)$ as in (1.1). Suppose that the complete system (1.2) is obtained from $\Delta^{(r)}$. Let $J^{k-1}(X, U)$ be the space of (k-1)th jets $(x, u^{(k-1)})$. Let $\mathcal{S} \subset J^{k-1}(X, U)$ be the common zero set of those functions in the arguments $(x, u^{(k-1)})$ that are elements of $\Delta^{(r)}$. We assume \mathcal{S} is a smooth manifold on which $dx^1 \wedge \cdots \wedge x^p \neq 0$. Then there exist disjoint sets of indices

$$A := \{(a, I)\} \text{ and } B := \{(b, J)\},\$$

where $a, b \in \{1, \dots, q\}$, I and J are multi-indices of order $\leq k - 1$ so that S is the graph

$$u_J^b = \Phi_J^b(x, u_I^a :), \quad \text{for all } (b, J) \in B.$$
(1.3)

We take $(x, u_I^a : (a, I) \in A)$, as local coordinates of \mathcal{S} . Observe that if u = u(x) is a solution of (1.1) then its (k - 1)th jet graph $(x, u^{(k-1)}(x))$ is contained in \mathcal{S} and for each $(a, I) \in A$, we have

$$du_{I}^{a}(x) = \begin{cases} \sum_{i=1}^{p} u_{Ii}^{a}(x) dx^{i} & \text{for } |I| \leq k-2, \\ \sum_{i=1}^{p} H_{Ii}^{a}(x, u^{(k-1)}) dx^{i} & \text{for } |I| = k-1, \end{cases}$$

where H's are as in (1.2).

Substituting (1.3) for all u_J^b with $(b, J) \in B$ we obtain

$$du_I^a(x) = \sum_{i=1}^p \Psi_{Ii}^a(x, u_L^\alpha(x)) dx^i,$$

where all the indices (α, L) are in A. Thus on \mathcal{S} we define independent 1-forms

$$\theta_{I}^{a} := du_{Ii}^{a} - \sum_{i=1}^{p} \Psi_{Ii}^{a}(x, u_{L}^{\alpha} : (\alpha, L) \in A) dx^{i}, \qquad (1.4)$$

for all $(a, I) \in A$. Then the smooth solutions of (1.1) are in one-to-one correspondence with the smooth integral manifolds of the Pfaffian system (1.4). Let $\theta = \{\theta_I^a : (a, I) \in A\}$. We set

$$d\theta_I^a \equiv \sum_{i < j} T_{Iij}^a(x, u_J^\alpha : (\alpha, J) \in A) dx^i \wedge dx^j, \qquad \text{mod } \theta.$$

If all of $T := \{T_{Iij}^a : (a, I) \in A\}$ are identically zero then S is foliated by integral manifolds by the Frobenius theorem. Otherwise, we pull back the Pfaffian system (1.4) to a subset $S' \subset S$, where S' is the common zero set of $\{\Delta, T\}$ and their compatibility conditions that are functions in $(x, u^{(k-1)})$. We assume that S' is a smooth manifold on which $dx^1 \wedge \cdots \wedge dx^p \neq 0$. Making use of the following theorem we further check the integrability of (1.4) on S'. **Theorem 1.1** Let M be a smooth manifold of dimension n. Let $\theta := (\theta^1, \dots, \theta^s)$ be a set of independent 1-forms on M and $\mathcal{D} := \langle \theta \rangle^{\perp}$ be the (n-s) dimensional plane field annihilated by θ . Suppose that N is a submanifold of M of dimension n-r defined by $T_1 = \dots = T_r = 0$, where T_i are smooth real-valued functions of M such that $dT_1 \wedge \dots \wedge dT_r \neq 0$ on N. Then the following are equivalent :

- (i) \mathcal{D} is tangent to N.
- (*ii*) $dT_j \equiv 0 \mod \theta^1, \ldots, \theta^s \text{ on } N, \ 1 \leq j \leq r$,
- (iii) $i^*\theta^1, \dots, i^*\theta^s$ have rank s r, where $i : N \hookrightarrow M$ is the inclusion.
- *Proof.* $(i) \Leftrightarrow (ii)$

Let $P \in N$. Then

 $\mathcal{D}_P \text{ is tangent to } N.$ $\Leftrightarrow <\theta^1, \cdots, \theta^s >^{\perp} \subset < dT_1, \cdots, dT_r >^{\perp} \text{ at } P.$ $\Leftrightarrow dT_i \in <\theta^1, \cdots, \theta^s > \text{ at } P \text{ for each } i = 1, \cdots, r.$ $\Leftrightarrow dT_i \equiv 0, \mod \theta.$

$$(ii) \Leftrightarrow (iii)$$

Assuming (*ii*), we have $dT_j = \sum_{k=1}^s a_{jk}\theta^k$ on $N, j = 1, \ldots, r$. Since dT_1, \ldots, dT_r are linearly independent on N, the matrix (a_{jk}) has rank r. Then we have

$$0 = i^* dT_j = \sum_{k=1}^s a_{jk} i^* \theta^k, \ 1 \le j \le r.$$

This means that $i^*\theta^1, \dots, i^*\theta^s$ have rank no greater than k - r. Since N is of dimension n - r, $i^*\theta^1, \dots, i^*\theta^s$ have rank no less than k - r. Therefore we obtain *(iii)*.

Conversely, (*iii*) implies that (after suitable index changes) $i^*\theta^{s-r+l} = \sum_{j=1}^{s-r} b_{lj} i^*\theta^j$, $1 \leq l \leq r$ for some functions on N. Then $i^*(\theta^{s-r+l} - \sum_{j=1}^{s-r} b_{lj}\theta^j) = 0$, $1 \leq l \leq r$. Since dT_1, \ldots, dT_r are linearly independent on N, we have $\theta^{s-r+l} - \sum_{j=1}^{s-r} b_{lj}\theta^j = \sum_j c_{lj}dT_j$, $1 \leq l \leq r$ on N, where c_{ij} are functions on N and the matrix (c_{ij}) is nonsingular. Therefore we can solve dT_j in terms of $\theta^{k'}$ s. Thus \mathcal{S}' is foliated by integral manifolds if $dT^a_{Iij} \equiv 0 \mod \theta$ on \mathcal{S}' . Otherwise, we repeat the same argument, eventually to reach a submanifold $\tilde{\mathcal{S}}$ of dimension $\leq p$. If $\tilde{\mathcal{S}}$ is of dimension p then the Frobenius integrability is simply

 $i^*\theta = 0,$

where $i : \tilde{S} \to S$ is the inclusion map. If the dimension of \tilde{S} is less than p, no solution exists.

As for the prolongation to a complete system we refer to [Han]. Our standard reference on exterior differential system are [Br] and [BCGGG].

References

- [**Br**] R. Bryant, *Nine lectures on exterior differential systems*, MSRI Lecture Note, 2002.
- [BCGGG] R. Bryant, S. S. Chern, R. Gardner, H. Goldschmidt and P. Griffiths, *Exterior differential systems*, Springer-Verlag, Berlin, 1991.
- [Han] C. K. Han, Equivalence problem and complete system of finite order, J. Korean Math. Soc. 37(2000), 225-243.