1 Local solvability of generic over-determined PDE systems

Let $u=\left(u^{1}, \cdots, u^{q}\right)$ be a system of real-valued functions of independent variables $x=\left(x^{1}, \cdots, x^{p}\right)$. Consider a system of partial differential equations of order m

$$
\begin{equation*}
\Delta_{\lambda}\left(x, u^{(m)}\right)=0, \quad \lambda=1, \cdots, \ell, \tag{1.1}
\end{equation*}
$$

where $u^{(m)}$ denotes all the partial derivatives of u of order up to m. We assume (1.1) is over-determined, that is, $\ell>q$. A multi-index of order r is an unordered r-tuple of integers $J=\left(j_{1}, \cdots, j_{r}\right)$ with $1 \leq j_{s} \leq p$. The order of a multi-index J is denoted by $|J|$. By u_{J}^{α} we denote the $|J|$-th order partial derivative of u^{α} with respect to $x^{j_{1}}, \cdots, x^{j_{|J|}}$. For a smooth function $\Delta\left(x, u^{(m)}\right)$, the total derivative of Δ with respect to x^{i} is the function in the arguments $\left(x, u^{(m+1)}\right)$ defined by the chain rule:

$$
D_{i} \Delta=\frac{\partial \Delta}{\partial x^{i}}+\sum_{\alpha=1}^{q} \sum_{|J| \leq m} \frac{\partial \Delta}{\partial u_{J}^{\alpha}} u_{J i}^{\alpha}
$$

where $J i$ dentes the multi-index $\left(j_{1}, \cdots, j_{|J|}, i\right)$. Compatibility conditions are those equations obtained from (1.1) by differentiation and algebraic operations, that is, the ideal generated by Δ and the total derivatives of Δ. By (1.1)'s being generic we shall mean that the compatibility conditions determine all the partial derivatives of u of a sufficiently high order, say $k(k \geq m)$, as functions of derivatives of lower order, namely,

$$
\begin{equation*}
u_{K}^{\alpha}=H_{K}^{\alpha}\left(x, u^{(k-1)}\right), \tag{1.2}
\end{equation*}
$$

for all multi-index K with $|K|=k$, and for all $\alpha=1, \cdots, q$. This is the case where there exists a system of compatibility conditions that satisfies the nondegeneracy hypothesis of the implicit function theorem so that the system is solvable for all u_{K} 's with $|K|=k$ in terms of lower order derivatives. If this is the case (1.2) is called a complete system of order k and (1.1) is said to admit prolongation to a complete system (1.2). Now we consider the ring of smooth functions in the arguments $\left(x, u^{\alpha}, u_{i}^{\alpha}, u_{i j}^{\alpha}, \cdots\right)$. For each non-negative integer r let $\Delta^{(r)}$ be the algebraic ideal generated by Δ and the total derivatives of Δ up to order r, where $\Delta=\left(\Delta_{1}, \cdots, \Delta_{\ell}\right)$ as in (1.1). Suppose that the complete system (1.2) is obtained from $\Delta^{(r)}$. Let $J^{k-1}(X, U)$ be the space
of $(k-1)$ th jets $\left(x, u^{(k-1)}\right)$. Let $\mathcal{S} \subset J^{k-1}(X, U)$ be the common zero set of those functions in the arguments $\left(x, u^{(k-1)}\right)$ that are elements of $\Delta^{(r)}$. We assume \mathcal{S} is a smooth manifold on which $d x^{1} \wedge \cdots \wedge x^{p} \neq 0$. Then there exist disjoint sets of indices

$$
A:=\{(a, I)\} \quad \text { and } B:=\{(b, J)\}
$$

where $a, b \in\{1, \cdots, q\}, I$ and J are multi-indices of order $\leq k-1$ so that \mathcal{S} is the graph

$$
\begin{equation*}
u_{J}^{b}=\Phi_{J}^{b}\left(x, u_{I}^{a}:\right), \quad \text { for all }(b, J) \in B \tag{1.3}
\end{equation*}
$$

We take $\left(x, u_{I}^{a}:(a, I) \in A\right)$, as local coordinates of \mathcal{S}. Observe that if $u=u(x)$ is a solution of (1.1) then its $(k-1)$ th jet graph $\left(x, u^{(k-1)}(x)\right)$ is contained in \mathcal{S} and for each $(a, I) \in A$, we have

$$
d u_{I}^{a}(x)=\left\{\begin{array}{l}
\sum_{i=1}^{p} u_{I I}^{a}(x) d x^{i} \text { for }|I| \leq k-2, \\
\sum_{i=1}^{p} H_{I i}^{a}\left(x, u^{(k-1)}\right) d x^{i} \text { for }|I|=k-1,
\end{array}\right.
$$

where H 's are as in (1.2).
Substituting (1.3) for all u_{J}^{b} with $(b, J) \in B$ we obtain

$$
d u_{I}^{a}(x)=\sum_{i=1}^{p} \Psi_{I i}^{a}\left(x, u_{L}^{\alpha}(x)\right) d x^{i}
$$

where all the indices (α, L) are in A. Thus on \mathcal{S} we define independent 1-forms

$$
\begin{equation*}
\theta_{I}^{a}:=d u_{I i}^{a}-\sum_{i=1}^{p} \Psi_{I i}^{a}\left(x, u_{L}^{\alpha}:(\alpha, L) \in A\right) d x^{i} \tag{1.4}
\end{equation*}
$$

for all $(a, I) \in A$. Then the smooth solutions of (1.1) are in one-to-one correspondence with the smooth integral manifolds of the Pfaffian system (1.4). Let $\theta=\left\{\theta_{I}^{a}:(a, I) \in A\right\}$. We set

$$
d \theta_{I}^{a} \equiv \sum_{i<j} T_{I i j}^{a}\left(x, u_{J}^{\alpha}:(\alpha, J) \in A\right) d x^{i} \wedge d x^{j}, \quad \bmod \theta
$$

If all of $T:=\left\{T_{I i j}^{a}:(a, I) \in A\right\}$ are identically zero then \mathcal{S} is foliated by integral manifolds by the Frobenius theorem. Otherwise, we pull back the Pfaffian system (1.4) to a subset $\mathcal{S}^{\prime} \subset \mathcal{S}$, where \mathcal{S}^{\prime} is the common zero set of $\{\Delta, T\}$ and their compatibility conditions that are functions in $\left(x, u^{(k-1)}\right)$. We assume that \mathcal{S}^{\prime} is a smooth manifold on which $d x^{1} \wedge \cdots \wedge d x^{p} \neq 0$. Making use of the following theorem we further check the integrability of (1.4) on \mathcal{S}^{\prime}.

Theorem 1.1 Let M be a smooth manifold of dimension n. Let $\theta:=$ $\left(\theta^{1}, \cdots, \theta^{s}\right)$ be a set of independent 1-forms on M and $\mathcal{D}:=<\theta>^{\perp}$ be the $(n-s)$ dimensional plane field annihilated by θ. Suppose that N is a submanifold of M of dimension $n-r$ defined by $T_{1}=\cdots=T_{r}=0$, where T_{i} are smooth real-valued functions of M such that $d T_{1} \wedge \cdots \wedge d T_{r} \neq 0$ on N. Then the following are equivalent :
(i) \mathcal{D} is tangent to N.
(ii) $d T_{j} \equiv 0 \quad \bmod \quad \theta^{1}, \ldots, \theta^{s}$ on $N, 1 \leq j \leq r$,
(iii) $i^{*} \theta^{1}, \cdots, i^{*} \theta^{s}$ have rank $s-r$, where $i: N \hookrightarrow M$ is the inclusion.

Proof. (i) $\Leftrightarrow(i i)$
Let $P \in N$. Then
\mathcal{D}_{P} is tangent to N.
$\Leftrightarrow<\theta^{1}, \cdots, \theta^{s}>^{\perp} \subset<d T_{1}, \cdots, d T_{r}>^{\perp}$ at P.
$\Leftrightarrow d T_{i} \in<\theta^{1}, \cdots, \theta^{s}>$ at P for each $i=1, \cdots, r$.
$\Leftrightarrow d T_{i} \equiv 0, \quad \bmod \theta$.
(ii) $\Leftrightarrow(i i i)$

Assuming (ii), we have $d T_{j}=\sum_{k=1}^{s} a_{j k} \theta^{k}$ on $N, j=1, \ldots, r$. Since $d T_{1}, \ldots, d T_{r}$ are linearly independent on N, the matrix $\left(a_{j k}\right)$ has rank r. Then we have

$$
0=i^{*} d T_{j}=\sum_{k=1}^{s} a_{j k} i^{*} \theta^{k}, \quad 1 \leq j \leq r
$$

This means that $i^{*} \theta^{1}, \cdots, i^{*} \theta^{s}$ have rank no greater than $k-r$. Since N is of dimension $n-r, i^{*} \theta^{1}, \cdots, i^{*} \theta^{s}$ have rank no less than $k-r$. Therefore we obtain (iii).
Conversely, (iii) implies that (after suitable index changes) $i^{*} \theta^{s-r+l}=\sum_{j=1}^{s-r} b_{l j} i^{*} \theta^{j}$, $1 \leq l \leq r$ for some functions on N. Then $i^{*}\left(\theta^{s-r+l}-\sum_{j=1}^{s-r} b_{l j} \theta^{j}\right)=0$, $1 \leq l \leq r$. Since $d T_{1}, \ldots, d T_{r}$ are linearly independent on N, we have $\theta^{s-r+l}-\sum_{j=1}^{s-r} b_{l j} \theta^{j}=\sum_{j} c_{l j} d T_{j}, 1 \leq l \leq r$ on N, where $c_{i j}$ are functions on N and the matrix $\left(c_{i j}\right)$ is nonsingular. Therefore we can solve $d T_{j}$ in terms of θ^{k} 's.

Thus \mathcal{S}^{\prime} is foliated by integral manifolds if $d T_{\text {Iij }}^{a} \equiv 0 \bmod \theta$ on \mathcal{S}^{\prime}. Otherwise, we repeat the same argument, eventually to reach a submanifold $\tilde{\mathcal{S}}$ of dimension $\leq p$. If $\tilde{\mathcal{S}}$ is of dimension p then the Frobenius integrability is simply

$$
i^{*} \theta=0,
$$

where $i: \tilde{\mathcal{S}} \rightarrow \mathcal{S}$ is the inclusion map. If the dimension of $\tilde{\mathcal{S}}$ is less than p, no solution exists.

As for the prolongation to a complete system we refer to [Han].
Our standard reference on exterior differential system are $[\mathbf{B r}]$ and $[\mathbf{B C G G G}]$.

References

[Br] R. Bryant, Nine lectures on exterior differential systems, MSRI Lecture Note, 2002.
[BCGGG] R. Bryant, S. S. Chern, R. Gardner, H. Goldschmidt and P. Griffiths, Exterior differential systems, Springer-Verlag, Berlin, 1991.
[Han] C. K. Han, Equivalence problem and complete system of finite order, J. Korean Math. Soc. 37(2000), 225-243.

